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Introduction
Imagine having a book that holds the most intimate and vital information about yourself—the

story of your genetic makeup, ancestry, and potential health pathways. This is the essence of personal

genomics, a field delving into the comprehensive examination and interpretation of an individual's

genetic blueprint, extending beyond conventional clinical genetic testing. It involves understanding the

contents of that precious book without the need for a comprehensive knowledge of family history, or

before official clinical diagnoses or tests [11]. The advent of Next-Generation Sequencing (NGS)

technologies represents a monumental leap forward in analyzing genomes and uncovering an

individual’s genetic blueprint. These cutting-edge sequencing methodologies, such as Roche 454,

Illumina, and SOLiD, represent a massive step forward in sequencing capabilities. NGS operates on a

massively parallelized platform, generating millions to billions of sequencing reads, each comprising

hundreds to thousands of base pairs. The resulting efficiency gain from parallelization (as compared to

older techniques, like Sanger sequencing) reduces the time required for a run to a timeframe of hours or

days; hence the cost of a whole-genome sequence has reduced by several orders of magnitude (from

millions to thousands of dollars). The relevance of such cost reductions are the expanded applications in

the everyday world, where this technology is now accessible to more individuals than ever before [12].

Among the specialized techniques within genomic analysis is exome sequencing. This method

concentrates on the protein-coding regions (exons) of the genome, employing a selective targeting and

capturing (or enriching) process for sequencing; the capture process involves biotinylated

oligonucleotides that are complementary to exonic regions, which selectively bind to those regions,

capturing only the exons as opposed to the entire sequence. Despite examining only exons, which

comprise just 1-2% of the genome, this focused approach yields a high success rate in identifying

disease-causing mutations. Historically, exome sequencing has been preferred over whole-genome

sequencing due to its cost-effectiveness, but recent advancements in technology have blurred the cost

disparity between the two approaches [12].

In this project, the primary objective is to dissect two sequence reads—forward and

reverse—representing an individual's entire genome. The aim is to convert raw sequence data of

exome-captured DNA into a comprehensive understanding of genetic variations, particularly

disease-causing genetic variants present within the sequence. The analytical steps of this project include

alignment, genotyping, and annotation. Alignment serves as the initial step, involving the mapping of

individual sequence reads onto the reference human genome. This process unveils the origin within the



genome for each sequencing read and highlights variations from the reference genome. To accomplish

this, the Burrows Wheeler alignment (BWA) algorithm is employed for its consistency and speed in

aligning short sequence reads to the vast human genome [4]. Subsequently, genotyping or variant calling

comes into play, aiming to identify single nucleotide polymorphisms (SNPs) and insertion-deletion events

(indels) by comparing an individual's genomic sequence reads against the reference human genome. This

step leverages repeated reads to determine the individual's genotype at specific positions. I use this

process to discern variations between the individual's genomic sequence and the reference, identifying

potential genetic differences. Finally, the automated annotation process enriches the genetic data by

adding additional information about each variant. This step aids in categorizing different types of genetic

variants and discerning their potential implications in diseases. Employing ANNOVAR enables the

layering of existing biological information onto the variants, including genomic context (exonic or

intronic), mutation types, implications in pathologies from genome-wide association studies, and more

[19].

These steps pave the way for a detailed exploration into the genetic landscape, with the aim to

unravel disease-causing variants and their potential implications in the context of the individual's

genomic profile. This endeavor seeks to bridge the gap between raw genetic data and real biological

insights, providing an understanding of the genetic makeup's relevance to potential health outcomes.

Methods
To streamline the process, all steps involved in converting sequence reads into an annotated list

of mutations were conducted on the Midway3 supercomputer. Each phase entailed the submission of a

shell script file specifying job names, requested time (twenty-four hours per task), and the relevant file

and script paths. Beginning with alignment, the BWA program mapped short sequencing reads to a

reference genome, optimizing matches for the best alignment [4]. The script included paths to two

"fastq" files, representing the sequences, and the BWA alignment program. Following alignment,

genotyping involved comparing the individual's genomic sequence reads to the reference using the

"mpileup" command from the SAMtools package [5]. Script parameters included addresses for the

sorted bam file from alignment and the genotyping command.

Before the final computational task, annotation, I segregated high-quality variants from the

variant call format file, based on Phred quality scores exceeding fifty. I utilized the ANNOVAR tool [19] for

the annotation itself, and employed the specific databases refGene, avsnp150, "clinvar," and functional

scores from "dbnsfp 42c" for a more detailed annotation. Both the high-quality and standard file were

annotated, and the former was later copied to my local machine for additional analysis using Excel. The

selection of variants for further investigation relied on the amount of accessible information on those

variants, both in the annotated spreadsheet and online. I began by filtering the “Clinical Significance”

column to eliminate blank and “benign” entries; and looked for rows whose SIFT, LRT, and Mutation

Taster columns contained values. After identifying candidates rows who met these criteria, I researched

the corresponding rs IDs on the NCBI database and dbSNP to learn what genetic diseases were caused by

the mutation and gauge the general amount of scientific literature written about them. Those with the

largest online footprints were chosen for further analysis. The resulting variants of interest were

primarily nonsynonymous mutations found within the exonic regions of the genome.



Results
A total of 115,625 variants were identified by the genotyping program. However, adhering to

different Phred quality score (Q) thresholds for the variants produced smaller datasets for analysis. A

total of 103,728 variants met the criteria at a standard of .1 Adhering to the higher threshold of𝑄 > 30
revealed a subset of 86,021 high-quality variants.2 Additionally, the count of exonic variants𝑄 ≥ 50

amounted to 16,326; 105,865 SNP genotypes and 10,011 indels/substitutions were identified, and the

total count for each mutation type consisted of 7,639 synonymous variants, 6,555 non-synonymous

variants, 57 frameshift mutations, and 49 premature stop codons.3

Table 1. Some High Quality Variants and Their Implications

Location of Variant Type of Variant Implications

Chromosome 1, Position
976215

Nonsynonymous
SNV

Renal tubular epithelial cell apoptosis

Chromosome 1, Position
11796321 (624, 1653 37)

Nonsynonymous
SNV

Thrombophilia and Hypertension

Chromosome 1, Position
203186754

Unspecified Risk of asthma

Chromosome 4, Position
38798089

Nonsynonymous
SNV

Associated with helicobacter pylori infection and
tuberculosis

Chromosome 5, Position
132660272

Nonsynonymous
SNV

Allergic rhinitis, susceptibility to asthma

Chromosome 6, Position
154093438

Synonymous SNV Heroine/opioid addiction

Chromosome 7, Position
101128436

Nonsynonymous
SNV

Hereditary angioedema; C1-inhibitor deficiency

Chromosome 10, Position
114045297

Nonsynonymous
SNV

Associated with unbalanced cardiac sympathetic
modulation, left ventricular hypertrophy, and
sudden cardiac death

3 All of these metrics include low-quality variants, as the documentation did not specify whether to answer these
questions for all variants or just the high quality ones.

2 This is the threshold outlined in the final project documentation.

1 This is the threshold outlined in Lab 8.



Chromosome 11, Position
75172532

Nonsynonymous
SNV

Lower rates of prostate cancer progression

Chromosome 12, Position
47879112 (435, 834, 15)

Start-loss Affects vitamin D levels; vitamin D dependent
rickets Type II

Chromosome 13, Position
109782884

Nonsynonymous
SNV

Predisposition to Type 2 Diabetes; increased
nonalcoholic fatty liver disease susceptibility

Chromosome 16, Position
27344882

Nonsynonymous
SNV

Immunodeficiency syndrome; promotes a
predisposition to the development of bullous
pemphigoid

Chromosome 16, Position
69711242

Nonsynonymous
SNV

Associated with increased cancer risk,
susceptibility to pneumonitis and esophagitis

Chromosome 19, Position
43551574

Nonsynonymous
SNV

Reduced risk of (thyroid, breast) cancer;
associated with rheumatoid arthritis

Chromosome 22, Position
43928847 (576, 1729, 18)

Nonsynonymous
SNV

Affects metabolic dysfunction-associated steatotic
liver disease (elevated ferritin); predictor for (in
combination with other mutations) tardive
dyskinesia

All of the mutations featured in the table above have rs IDs and are documented in at least one

scientific journal, indicating that they have all been discovered previously. A few mutations were

particularly well documented in the National Library of Medicine; of these I chose three to examine

further. On chromosome 1 at position 11796321 I identified a non-synonymous SNP in gene MTHFR that

changed the amino acid alanine to valine (rs1801133). Similarly, I discovered another non-synonymous

SNP at position 43928847 of Chromosome 22; the mutation occurred in gene PNPLA3, changing

isoleucine to methionine (rs738409). Moreover, located on chromosome 12 at position 47879112 is a

start-loss mutation in gene VDR, where the start codon for methionine is changed to threonine

(rs2228570). Each of these mutations, along with their respective genes, has associations with specific

diseases and symptoms, as uncovered through research on databases like OMIM, the National Library of

Medicine, and Clinvar.

The MTHFR gene provides instructions for producing an enzyme that is involved in folate

metabolism. The alanine to valine mutation identified in this gene is associated with a reduction of this

enzyme's activity and high levels of homocysteine in the blood, which can increase the risk of vascular

disease. Different populations show varying frequencies of this mutation. Homozygous individuals tend

to have higher homocysteine levels, which can be normalized with low-dose folic acid supplementation

[15]. Common symptoms of this disease include chest pain, leg cramping during physical activity,

numbness and weakness. This mutation has higher allele frequencies in Latin American, Asian, and

European populations, and occurs at lower frequencies in African and African American populations [17].



The PNPLA3 gene is responsible for coding a protein involved in lipid metabolism, particularly in

the liver; this protein breaks down fats, storing or mobilizing them as needed for energy [7]. Clinvar

identifies this mutation of isoleucine to methionine as a risk factor for non-alcoholic fatty liver disease.

Symptoms of this disease include fatigue, abdominal pain, and weight loss. This mutation has higher

allele frequencies in East Asian, Asian, and Latin American populations, and occurs at lower frequencies

in African and African American populations [16].

The VTD gene provides instructions for producing the Vitamin D receptor protein, which acts as a

transcription factor, binding to specific DNA sequences and regulating the expression of various genes in

response to the vitamin’s active form. It plays a crucial role in calcium and phosphate absorption, and

bone health [9]. Ponasenko et al. identify a relationship between this mutation and coronary artery

disease severity, with individuals carrying the A/A-A/G genotypes found to have a significantly decreased

serum levels of vitamin D in high-risk patients. This suggests a potential link between this VTD gene

variant and the severity of coronary artery disease [13]. Another study done by Zhong et al. found that

lower vitamin D levels are linked to an increased risk of cardio cerebrovascular diseases in prediabetic

individuals, and that this mutation interacted significantly with vitamin D levels in blood serum [21].

Common symptoms of coronary artery disease are chest pains, shortness of breath, and heart attacks.

This mutation has higher allele frequencies in African and African American populations, and occurs at

lower frequencies in Latin American, Asian, and East Asian populations [18].

Figure 1. Mutation Frequency [20]

Intronic mutations were much more common than exonic and intergenic mutations, which in turn were more common than
mRNA and UTR mutations.



Figure 2. Mutation Frequency [20]

Figure 3. Number of Mutations per Chromosome [20]



Figure 4. Chromosome Size vs. Number of Mutations [20]

The statistical correlation between chromosome size and the number of mutations in a chromosome is 0.64, suggesting a
moderate positive linear relationship between the explanatory and response variable; larger chromosomes will generally have
more mutations.

Figure 5. Genes, Exons, and Introns vs. Mutation Count on Each Chromosome [20]

There is a strong linear correlation between the total number of mutations in each chromosome and its associated genes, and
exonic and intronic mutations. A simple visual analysis indicates that the rate of increase for exonic variants and genes per
thousand mutations is significantly lower than the rate of increase for intronic mutations. Quantifying this relationship with a
least-squares regression line, I find the slope associated with the exonic mutations to be 0.1791, and the slope associated with
the intronic mutations to be 0.6790. A possible explanation for this difference might be the generally longer intronic regions of
chromosomes with more mutations; the chromosomes with more mutations are generally those that are larger and possess
more genetic material, which most directly increases the likelihood of mutation occurrence. Moreover, intronic mutations are
generally considered to be less damaging than exonic mutations, as while they could impact gene expression, they are not as
directly linked to amino acid changes in a protein sequence. Hence, intronic mutations can accumulate, particularly in larger
chromosomes where the damage is often unrealized in the form of altered proteins.



Discussion
Of the variants I have discussed so far, the alanine to valine mutation in gene MTHFR is most

prominently represented in scientific research. This gene provides instructions for producing an enzyme,

methylenetetrahydrofolate reductase, that is involved in folate metabolism, a process by which five

10-methylenetetrahydrofolate are converted to 5-methyltetrahydrofolate. This conversion is essential for

the body's processes of converting the amino acid homocysteine to methionine, whose product allows

for the production of proteins and other important compounds [7]. Moreover, elevated levels of

homocysteine can damage the inner lining of blood vessels, cause a build-up of plaque in the arteries,

and increase blood clot formation [6]. The role of mutations in this gene causing vascular disease are tied

entirely to the enzymes it codes for; in reducing the activity of the MTHFR enzyme and increasing its

thermolability, the body experiences significantly higher levels of plasma homocysteine (particularly for

homozygous individuals), a compound linked to various cardiovascular issues and vascular disease [15].

Frosst et al. established the initial connection between this mutation, reduced enzyme activity,

and higher homocysteine levels.. They note that the amino acid is highly-conserved, yet this substitution

occurs at a frequency of 38% in unselected chromosomes. Their findings form the basis for further

research on the relationship between this mutation and vascular disease in different population groups,

and in combination with other factors [2]. For instance, Chiu et al. discuss this mutation as it relates to

susceptibility for hypertension in Taiwanese adults, finding that the presence of the TT genotype might

heighten the risk of hypertension compared to those without. In their study, they also investigate how

methylation, a chemical modification that affects gene expression, affects the risk of hypertension as it

relates to the MTHFR gene, but find no significant relationship between methylation levels alone and

hypertension. The combination of specific genotypes at this position with MTHFR promoter methylation

was discovered to jointly impact an individual’s susceptibility to hypertension [1].

The broader impacts of this mutation from valine to alanine can be explained at the molecular

level, where the chemical structure of the enzyme is altered, reducing its activity and increasing its

thermolability. The difference between these two non-polar amino acids can be found in their R group,

where valine consists of a benzine, a methylene, and a methyl radical, and alanine only contains the

methyl radical. I was able to locate one scientific discussion of this enzyme’s structure, and how this

mutation affects the protein chemically; Frosst et al. claim that the enzyme is stabilized in the presence

of folate, to which MTHFR typically binds [2]. In a more general sense, amino acid substitutions are

known to compromise the structural integrity of proteins and impact their ability to fold, which directly

impacts their functions. With regard to enzymes specifically, the degree to which binding sites and active

sites for their substrates are preserved is particularly indicative of how well the mutated enzyme will

function. In this instance, since a change to the binding site is suggested, the protein would be rendered

less stable and hence less effective.

Whilst the studies I have discussed here shed an important light on the promising capabilities of

bioinformatics, many include a list of limitations pertaining to their methodologies. Nearly all reference

statistical factors such as potential unrepresentativeness of the population and a lack of existing data or

background information. More interestingly, in a paper discussing the relationship between this

mutation in the MTHFR gene and serum homocysteine levels in hypertensive patients, Hu et al. note a



different experimental consideration that is a bit more biological in nature; despite them finding a

significant correlation between this mutation and serum homocysteine, they note that “the interactions

of gene-gene, gene-environment, and environment-environment on serum Hcy levels and the MTHFR

SNP remain to be determined” [3]. This observation reflects an inherent limitation of bioinformatics

insofar as it cannot account for the impact of an individual’s environment on gene expression or their

health in general. Even in the context of what can be broken down by bioinformatics, namely genes, the

interactions between genes that produce health outcomes can often be challenging to discover and

understand. Hence, being aware of potential pitfalls when conducting exome sequencing and analysis

are important; here are some considerations [12]:

1. Locating Exons/Genes: discrepancies exist between databases that catalog the location of

specific genes, and accurately determining the number of protein-coding and noncoding genes,

in addition to the function of some of the proteins they code for, is still an open problem.

2. Complexity and Variability: the process of analyzing exome sequencing reads involves multiple

intricate steps, the methods for which are constantly evolving. The impact of using different

software tools on results or making different assumptions can be substantial, and the same data

may yield very different results depending on how the analysis is conducted.

3. Reference Genome: there is not a single definitive reference genome, and there is not a singular

agreed-upon set of variants associated with the human genome; the methodology of exome

sequencing weighs heavily on the final description of the genome.

In addition to the gaps in our understanding surrounding the human genome and the inability

for personal genomics to account for the influence of environmental and lifestyle factors on an

individual’s propensity to develop a specific disease, there are also broader concerns related to how this

data may impact individuals’ lives. In addition to the psychological impact of discovering genetic

predispositions in one’s genome, which may cause anxiety and unnecessary stress for the individual,

there exists notable privacy and discrimination concerns associated with personal genomics that may

prevent it from reaching a wide scale implementation in medicine. Nonetheless, the benefits that

personal genomics can offer in a clinical setting will only improve as our understanding of the human

genome becomes more complete. I see the largest application in preventative care and initial diagnoses;

in my discussion of the alanine to valine mutation, for instance, personal genomics would give doctors

access to another tool to diagnose vascular disease in a patient, and treat or address it sooner (perhaps

by prescribing folate supplements or advising a particular diet to lower the patient’s homocysteine

levels). According to Frosst et al., “the identification of a candidate genetic risk factor for vascular

disease, which may be influenced by nutrient intake, represents a critical step in the design of

appropriate therapies for the homocysteinaemic form of arteriosclerosis” [2]. Ultimately, as the field of

personal genomics develops and evolves, it should take its place as one of many tools that a physician

can use to advise and treat their patients; it is not a replacement for traditional medicine, and the

privacy and psychological downsides of its use must be considered alongside the benefits it offers.



Conclusions
The field of personal genomics offers promise for deciphering genetic blueprints and treating the

diseases associated with them. Through technologies like NGS and exome sequencing, the once obscure

realm of genomics has become more accessible, offering profound insights into an individual's genetic

predispositions and ancestral lineage. The analytical process undertaken in this project—from alignment

to genotyping and annotation—reflects the bridge between raw genetic data and meaningful biological

insights. These steps, while powerful in unraveling disease-causing variants, also highlight the

complexities in genomic analysis and the crucial role of methodology in deciphering an individual’s

genetic landscape.

The focused examination of specific mutations, such as the valine to alanine substitution in the

MTHFR gene, underscores how intricate molecular changes can have broader implications within

biological systems. This mutation's influence on enzyme activity and thermolability emphasizes the

complex interplay between genetic variations and disease pathways, as evidenced by its association with

elevated homocysteine levels and increased risk of vascular disease. Yet, amidst the potential capability

to diagnose patients based on their genomes, limitations do exist. The limited information regarding how

genes interact, in addition to the role that one’s lifestyle and environment play in determining health

outcomes, is not as easily accounted for through bioinformatics. Moreover, the effects of personal

genomics extend beyond the scientific realm, raising ethical, privacy, and psychological concerns. While

this field holds immense promise in preemptive healthcare and initial diagnoses, the limitations and

concerns associated with it ought to be considered alongside its use. As this field continues to evolve, it

should find its place as a complementary tool in the existing healthcare system, enhancing traditional

medical practices rather than serving as a standalone solution. Understanding the limitations, ethical

concerns, and the evolving nature of genomic knowledge remains crucial as personal genomics

continues to shape the future of healthcare.4

4 Note: without graphics (table, graphs) this report is seven pages long.
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