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Introduction

Imagine having a book that holds the most intimate and vital information about yourself—the
story of your genetic makeup, ancestry, and potential health pathways. This is the essence of personal
genomics, a field delving into the comprehensive examination and interpretation of an individual's
genetic blueprint, extending beyond conventional clinical genetic testing. It involves understanding the
contents of that precious book without the need for a comprehensive knowledge of family history, or
before official clinical diagnoses or tests [11]. The advent of Next-Generation Sequencing (NGS)
technologies represents a monumental leap forward in analyzing genomes and uncovering an
individual’s genetic blueprint. These cutting-edge sequencing methodologies, such as Roche 454,
[llumina, and SOLID, represent a massive step forward in sequencing capabilities. NGS operates on a
massively parallelized platform, generating millions to billions of sequencing reads, each comprising
hundreds to thousands of base pairs. The resulting efficiency gain from parallelization (as compared to
older techniques, like Sanger sequencing) reduces the time required for a run to a timeframe of hours or
days; hence the cost of a whole-genome sequence has reduced by several orders of magnitude (from
millions to thousands of dollars). The relevance of such cost reductions are the expanded applications in
the everyday world, where this technology is now accessible to more individuals than ever before [12].

Among the specialized techniques within genomic analysis is exome sequencing. This method
concentrates on the protein-coding regions (exons) of the genome, employing a selective targeting and
capturing (or enriching) process for sequencing; the capture process involves biotinylated
oligonucleotides that are complementary to exonic regions, which selectively bind to those regions,
capturing only the exons as opposed to the entire sequence. Despite examining only exons, which
comprise just 1-2% of the genome, this focused approach yields a high success rate in identifying
disease-causing mutations. Historically, exome sequencing has been preferred over whole-genome
sequencing due to its cost-effectiveness, but recent advancements in technology have blurred the cost
disparity between the two approaches [12].

In this project, the primary objective is to dissect two sequence reads—forward and
reverse—representing an individual's entire genome. The aim is to convert raw sequence data of
exome-captured DNA into a comprehensive understanding of genetic variations, particularly
disease-causing genetic variants present within the sequence. The analytical steps of this project include
alignment, genotyping, and annotation. Alignment serves as the initial step, involving the mapping of
individual sequence reads onto the reference human genome. This process unveils the origin within the



genome for each sequencing read and highlights variations from the reference genome. To accomplish
this, the Burrows Wheeler alignment (BWA) algorithm is employed for its consistency and speed in
aligning short sequence reads to the vast human genome [4]. Subsequently, genotyping or variant calling
comes into play, aiming to identify single nucleotide polymorphisms (SNPs) and insertion-deletion events
(indels) by comparing an individual's genomic sequence reads against the reference human genome. This
step leverages repeated reads to determine the individual's genotype at specific positions. | use this
process to discern variations between the individual's genomic sequence and the reference, identifying
potential genetic differences. Finally, the automated annotation process enriches the genetic data by
adding additional information about each variant. This step aids in categorizing different types of genetic
variants and discerning their potential implications in diseases. Employing ANNOVAR enables the
layering of existing biological information onto the variants, including genomic context (exonic or
intronic), mutation types, implications in pathologies from genome-wide association studies, and more
[19].

These steps pave the way for a detailed exploration into the genetic landscape, with the aim to
unravel disease-causing variants and their potential implications in the context of the individual's
genomic profile. This endeavor seeks to bridge the gap between raw genetic data and real biological
insights, providing an understanding of the genetic makeup's relevance to potential health outcomes.

Methods

To streamline the process, all steps involved in converting sequence reads into an annotated list
of mutations were conducted on the Midway3 supercomputer. Each phase entailed the submission of a
shell script file specifying job names, requested time (twenty-four hours per task), and the relevant file
and script paths. Beginning with alignment, the BWA program mapped short sequencing reads to a
reference genome, optimizing matches for the best alignment [4]. The script included paths to two
"fastq" files, representing the sequences, and the BWA alignment program. Following alignment,
genotyping involved comparing the individual's genomic sequence reads to the reference using the
"mpileup" command from the SAMtools package [5]. Script parameters included addresses for the
sorted bam file from alignment and the genotyping command.

Before the final computational task, annotation, | segregated high-quality variants from the
variant call format file, based on Phred quality scores exceeding fifty. | utilized the ANNOVAR tool [19] for
the annotation itself, and employed the specific databases refGene, avsnp150, "clinvar," and functional
scores from "dbnsfp 42c" for a more detailed annotation. Both the high-quality and standard file were
annotated, and the former was later copied to my local machine for additional analysis using Excel. The
selection of variants for further investigation relied on the amount of accessible information on those
variants, both in the annotated spreadsheet and online. | began by filtering the “Clinical Significance”
column to eliminate blank and “benign” entries; and looked for rows whose SIFT, LRT, and Mutation
Taster columns contained values. After identifying candidates rows who met these criteria, | researched
the corresponding rs IDs on the NCBI database and dbSNP to learn what genetic diseases were caused by
the mutation and gauge the general amount of scientific literature written about them. Those with the
largest online footprints were chosen for further analysis. The resulting variants of interest were
primarily nonsynonymous mutations found within the exonic regions of the genome.



Results

A total of 115,625 variants were identified by the genotyping program. However, adhering to

different Phred quality score (Q) thresholds for the variants produced smaller datasets for analysis. A
total of 103,728 variants met the criteria at a standard of Q > 30.* Adhering to the higher threshold of
Q = 50 revealed a subset of 86,021 high-quality variants.” Additionally, the count of exonic variants
amounted to 16,326; 105,865 SNP genotypes and 10,011 indels/substitutions were identified, and the
total count for each mutation type consisted of 7,639 synonymous variants, 6,555 non-synonymous

variants, 57 frameshift mutations, and 49 premature stop codons.?

Table 1. Some High Quality Variants and Their Implications

Location of Variant Type of Variant Implications

Chromosome 1, Position Nonsynonymous Renal tubular epithelial cell apoptosis

976215 SNV

Chromosome 1, Position Nonsynonymous  Thrombophilia and Hypertension

11796321 (624, 1653 37) SNV

Chromosome 1, Position Unspecified Risk of asthma

203186754

Chromosome 4, Position Nonsynonymous Associated with helicobacter pylori infection and
38798089 SNV tuberculosis

Chromosome 5, Position Nonsynonymous  Allergic rhinitis, susceptibility to asthma
132660272 SNV

Chromosome 6, Position Synonymous SNV Heroine/opioid addiction

154093438

Chromosome 7, Position Nonsynonymous Hereditary angioedema; Cl-inhibitor deficiency
101128436 SNV

Chromosome 10, Position Nonsynonymous  Associated with unbalanced cardiac sympathetic
114045297 SNV modulation, left ventricular hypertrophy, and

! This is the threshold outlined in Lab 8.

sudden cardiac death

2 This is the threshold outlined in the final project documentation.
3 All of these metrics include low-quality variants, as the documentation did not specify whether to answer these

questions for all variants or just the high quality ones.



Chromosome 11, Position Nonsynonymous Lower rates of prostate cancer progression
75172532 SNV
Chromosome 12, Position Start-loss Affects vitamin D levels; vitamin D dependent
47879112 (435, 834, 15) rickets Type Il
Chromosome 13, Position Nonsynonymous Predisposition to Type 2 Diabetes; increased
109782884 SNV nonalcoholic fatty liver disease susceptibility
Chromosome 16, Position Nonsynonymous Immunodeficiency syndrome; promotes a
27344882 SNV predisposition to the development of bullous
pemphigoid
Chromosome 16, Position Nonsynonymous Associated with increased cancer risk,
69711242 SNV susceptibility to pneumonitis and esophagitis
Chromosome 19, Position Nonsynonymous Reduced risk of (thyroid, breast) cancer;
43551574 SNV associated with rheumatoid arthritis
Chromosome 22, Position Nonsynonymous Affects metabolic dysfunction-associated steatotic
43928847 (576, 1729, 18) SNV liver disease (elevated ferritin); predictor for (in

combination with other mutations) tardive
dyskinesia

All of the mutations featured in the table above have rs IDs and are documented in at least one
scientific journal, indicating that they have all been discovered previously. A few mutations were
particularly well documented in the National Library of Medicine; of these | chose three to examine
further. On chromosome 1 at position 11796321 | identified a non-synonymous SNP in gene MTHFR that
changed the amino acid alanine to valine (rs1801133). Similarly, | discovered another non-synonymous
SNP at position 43928847 of Chromosome 22; the mutation occurred in gene PNPLA3, changing
isoleucine to methionine (rs738409). Moreover, located on chromosome 12 at position 47879112 is a
start-loss mutation in gene VDR, where the start codon for methionine is changed to threonine
(rs2228570). Each of these mutations, along with their respective genes, has associations with specific
diseases and symptoms, as uncovered through research on databases like OMIM, the National Library of
Medicine, and Clinvar.

The MTHFR gene provides instructions for producing an enzyme that is involved in folate
metabolism. The alanine to valine mutation identified in this gene is associated with a reduction of this
enzyme's activity and high levels of homocysteine in the blood, which can increase the risk of vascular
disease. Different populations show varying frequencies of this mutation. Homozygous individuals tend
to have higher homocysteine levels, which can be normalized with low-dose folic acid supplementation
[15]. Common symptoms of this disease include chest pain, leg cramping during physical activity,
numbness and weakness. This mutation has higher allele frequencies in Latin American, Asian, and
European populations, and occurs at lower frequencies in African and African American populations [17].



The PNPLA3 gene is responsible for coding a protein involved in lipid metabolism, particularly in
the liver; this protein breaks down fats, storing or mobilizing them as needed for energy [7]. Clinvar
identifies this mutation of isoleucine to methionine as a risk factor for non-alcoholic fatty liver disease.
Symptoms of this disease include fatigue, abdominal pain, and weight loss. This mutation has higher
allele frequencies in East Asian, Asian, and Latin American populations, and occurs at lower frequencies
in African and African American populations [16].

The VTD gene provides instructions for producing the Vitamin D receptor protein, which acts as a
transcription factor, binding to specific DNA sequences and regulating the expression of various genes in
response to the vitamin’s active form. It plays a crucial role in calcium and phosphate absorption, and
bone health [9]. Ponasenko et al. identify a relationship between this mutation and coronary artery
disease severity, with individuals carrying the A/A-A/G genotypes found to have a significantly decreased
serum levels of vitamin D in high-risk patients. This suggests a potential link between this VTD gene
variant and the severity of coronary artery disease [13]. Another study done by Zhong et al. found that
lower vitamin D levels are linked to an increased risk of cardio cerebrovascular diseases in prediabetic
individuals, and that this mutation interacted significantly with vitamin D levels in blood serum [21].
Common symptoms of coronary artery disease are chest pains, shortness of breath, and heart attacks.
This mutation has higher allele frequencies in African and African American populations, and occurs at
lower frequencies in Latin American, Asian, and East Asian populations [18].
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Figure 1. Mutation Frequency (2o

Intronic mutations were much more common than exonic and intergenic mutations, which in turn were more common than
mRNA and UTR mutations.
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Figure 2. Mutation Frequency [2o]
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Figure 3. Number of Mutations per Chromosome [2o]
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Figure 4. Chromosome Size vs. Number of Mutations 2o

The statistical correlation between chromosome size and the number of mutations in a chromosome is 0.64, suggesting a
moderate positive linear relationship between the explanatory and response variable; larger chromosomes will generally have

more mutations.
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Figure 5. Genes, Exons, and Introns vs. Mutation Count on Each Chromosome (2]

There is a strong linear correlation between the total number of mutations in each chromosome and its associated genes, and
exonic and intronic mutations. A simple visual analysis indicates that the rate of increase for exonic variants and genes per
thousand mutations is significantly lower than the rate of increase for intronic mutations. Quantifying this relationship with a
least-squares regression line, | find the slope associated with the exonic mutations to be 0.1791, and the slope associated with
the intronic mutations to be 0.6790. A possible explanation for this difference might be the generally longer intronic regions of
chromosomes with more mutations; the chromosomes with more mutations are generally those that are larger and possess
more genetic material, which most directly increases the likelihood of mutation occurrence. Moreover, intronic mutations are
generally considered to be less damaging than exonic mutations, as while they could impact gene expression, they are not as
directly linked to amino acid changes in a protein sequence. Hence, intronic mutations can accumulate, particularly in larger
chromosomes where the damage is often unrealized in the form of altered proteins.



Discussion

Of the variants | have discussed so far, the alanine to valine mutation in gene MTHFR is most
prominently represented in scientific research. This gene provides instructions for producing an enzyme,
methylenetetrahydrofolate reductase, that is involved in folate metabolism, a process by which five
10-methylenetetrahydrofolate are converted to 5-methyltetrahydrofolate. This conversion is essential for
the body's processes of converting the amino acid homocysteine to methionine, whose product allows
for the production of proteins and other important compounds [7]. Moreover, elevated levels of
homocysteine can damage the inner lining of blood vessels, cause a build-up of plaque in the arteries,
and increase blood clot formation [6]. The role of mutations in this gene causing vascular disease are tied
entirely to the enzymes it codes for; in reducing the activity of the MTHFR enzyme and increasing its
thermolability, the body experiences significantly higher levels of plasma homocysteine (particularly for
homozygous individuals), a compound linked to various cardiovascular issues and vascular disease [15].

Frosst et al. established the initial connection between this mutation, reduced enzyme activity,
and higher homocysteine levels.. They note that the amino acid is highly-conserved, yet this substitution
occurs at a frequency of 38% in unselected chromosomes. Their findings form the basis for further
research on the relationship between this mutation and vascular disease in different population groups,
and in combination with other factors [2]. For instance, Chiu et al. discuss this mutation as it relates to
susceptibility for hypertension in Taiwanese adults, finding that the presence of the TT genotype might
heighten the risk of hypertension compared to those without. In their study, they also investigate how
methylation, a chemical modification that affects gene expression, affects the risk of hypertension as it
relates to the MTHFR gene, but find no significant relationship between methylation levels alone and
hypertension. The combination of specific genotypes at this position with MTHFR promoter methylation
was discovered to jointly impact an individual’s susceptibility to hypertension [1].

The broader impacts of this mutation from valine to alanine can be explained at the molecular
level, where the chemical structure of the enzyme is altered, reducing its activity and increasing its
thermolability. The difference between these two non-polar amino acids can be found in their R group,
where valine consists of a benzine, a methylene, and a methyl radical, and alanine only contains the
methyl radical. | was able to locate one scientific discussion of this enzyme’s structure, and how this
mutation affects the protein chemically; Frosst et al. claim that the enzyme is stabilized in the presence
of folate, to which MTHFR typically binds [2]. In a more general sense, amino acid substitutions are
known to compromise the structural integrity of proteins and impact their ability to fold, which directly
impacts their functions. With regard to enzymes specifically, the degree to which binding sites and active
sites for their substrates are preserved is particularly indicative of how well the mutated enzyme will
function. In this instance, since a change to the binding site is suggested, the protein would be rendered
less stable and hence less effective.

Whilst the studies | have discussed here shed an important light on the promising capabilities of
bioinformatics, many include a list of limitations pertaining to their methodologies. Nearly all reference
statistical factors such as potential unrepresentativeness of the population and a lack of existing data or
background information. More interestingly, in a paper discussing the relationship between this
mutation in the MTHFR gene and serum homocysteine levels in hypertensive patients, Hu et al. note a



different experimental consideration that is a bit more biological in nature; despite them finding a
significant correlation between this mutation and serum homocysteine, they note that “the interactions
of gene-gene, gene-environment, and environment-environment on serum Hcy levels and the MTHFR
SNP remain to be determined” [3]. This observation reflects an inherent limitation of bioinformatics
insofar as it cannot account for the impact of an individual’s environment on gene expression or their
health in general. Even in the context of what can be broken down by bioinformatics, namely genes, the
interactions between genes that produce health outcomes can often be challenging to discover and
understand. Hence, being aware of potential pitfalls when conducting exome sequencing and analysis
are important; here are some considerations [12]:

1. Locating Exons/Genes: discrepancies exist between databases that catalog the location of
specific genes, and accurately determining the number of protein-coding and noncoding genes,
in addition to the function of some of the proteins they code for, is still an open problem.

2. Complexity and Variability: the process of analyzing exome sequencing reads involves multiple
intricate steps, the methods for which are constantly evolving. The impact of using different
software tools on results or making different assumptions can be substantial, and the same data
may vyield very different results depending on how the analysis is conducted.

3. Reference Genome: there is not a single definitive reference genome, and there is not a singular
agreed-upon set of variants associated with the human genome; the methodology of exome
sequencing weighs heavily on the final description of the genome.

In addition to the gaps in our understanding surrounding the human genome and the inability
for personal genomics to account for the influence of environmental and lifestyle factors on an
individual’s propensity to develop a specific disease, there are also broader concerns related to how this
data may impact individuals’ lives. In addition to the psychological impact of discovering genetic
predispositions in one’s genome, which may cause anxiety and unnecessary stress for the individual,
there exists notable privacy and discrimination concerns associated with personal genomics that may
prevent it from reaching a wide scale implementation in medicine. Nonetheless, the benefits that
personal genomics can offer in a clinical setting will only improve as our understanding of the human
genome becomes more complete. | see the largest application in preventative care and initial diagnoses;
in my discussion of the alanine to valine mutation, for instance, personal genomics would give doctors
access to another tool to diagnose vascular disease in a patient, and treat or address it sooner (perhaps
by prescribing folate supplements or advising a particular diet to lower the patient’s homocysteine
levels). According to Frosst et al., “the identification of a candidate genetic risk factor for vascular
disease, which may be influenced by nutrient intake, represents a critical step in the design of
appropriate therapies for the homocysteinaemic form of arteriosclerosis” [2]. Ultimately, as the field of
personal genomics develops and evolves, it should take its place as one of many tools that a physician
can use to advise and treat their patients; it is not a replacement for traditional medicine, and the
privacy and psychological downsides of its use must be considered alongside the benefits it offers.



Conclusions

The field of personal genomics offers promise for deciphering genetic blueprints and treating the
diseases associated with them. Through technologies like NGS and exome sequencing, the once obscure
realm of genomics has become more accessible, offering profound insights into an individual's genetic
predispositions and ancestral lineage. The analytical process undertaken in this project—from alignment
to genotyping and annotation—reflects the bridge between raw genetic data and meaningful biological
insights. These steps, while powerful in unraveling disease-causing variants, also highlight the
complexities in genomic analysis and the crucial role of methodology in deciphering an individual’s
genetic landscape.

The focused examination of specific mutations, such as the valine to alanine substitution in the
MTHFR gene, underscores how intricate molecular changes can have broader implications within
biological systems. This mutation's influence on enzyme activity and thermolability emphasizes the
complex interplay between genetic variations and disease pathways, as evidenced by its association with
elevated homocysteine levels and increased risk of vascular disease. Yet, amidst the potential capability
to diagnose patients based on their genomes, limitations do exist. The limited information regarding how
genes interact, in addition to the role that one’s lifestyle and environment play in determining health
outcomes, is not as easily accounted for through bioinformatics. Moreover, the effects of personal
genomics extend beyond the scientific realm, raising ethical, privacy, and psychological concerns. While
this field holds immense promise in preemptive healthcare and initial diagnoses, the limitations and
concerns associated with it ought to be considered alongside its use. As this field continues to evolve, it
should find its place as a complementary tool in the existing healthcare system, enhancing traditional
medical practices rather than serving as a standalone solution. Understanding the limitations, ethical
concerns, and the evolving nature of genomic knowledge remains crucial as personal genomics
continues to shape the future of healthcare.”

4 Note: without graphics (table, graphs) this report is seven pages long.
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